1 2 Fe b 20 02 Products of Random Matrices
نویسندگان
چکیده
We derive analytic expressions for infinite products of random 2 × 2 matrices. The determinant of the target matrix is log-normally distributed, whereas the remainder is a surprisingly complicated function of a parameter characterizing the norm of the matrix and a parameter characterizing its skewness. The distribution may have importance as an uncommitted prior in statistical image analysis.
منابع مشابه
- th / 0 20 20 56 v 1 1 9 Fe b 20 02 Comment on “ Spectroscopy with Random and Displaced Random Ensemble ”
متن کامل
ar X iv : m at h / 07 02 36 0 v 1 [ m at h . N A ] 1 3 Fe b 20 07 On the number of minima of a random polynomial ∗
We give an upper bound in O(d) for the number of critical points of a normal random polynomial. The number of minima (resp. maxima) is in O(d)Pn, where Pn is the (unknown) measure of the set of symmetric positive matrices in the Gaussian Orthogonal Ensemble GOE(n). Finally, we give a closed form expression for the number of maxima (resp. minima) of a random univariate polynomial, in terms of hy...
متن کاملThe abelian sandpile model on a random binary tree
We study the abelian sandpile model on a random binary tree. Using a transfer matrix approach introduced by Dhar & Majumdar, we prove exponential decay of correlations, and in a small supercritical region exponential decay of avalanche sizes. This shows a phase transition phenomenon between exponential decay and power law decay of avalanche sizes. Our main technical tools are: (1) A recursion f...
متن کاملar X iv : 0 70 8 . 28 95 v 4 [ m at h . PR ] 2 1 Fe b 20 08 RANDOM MATRICES : THE CIRCULAR LAW
Let x be a complex random variable with mean zero and bounded variance σ 2. Let Nn be a random matrix of order n with entries being i.i.d. copies of x. Let λ 1 ,. .. , λn be the eigenvalues of 1 σ √ n Nn. Define the empirical spectral distribution µn of Nn by the formula µn(s, t) := 1 n #{k ≤ n|Re(λ k) ≤ s; Im(λ k) ≤ t}. The following well-known conjecture has been open since the 1950's: Circul...
متن کاملar X iv : 0 70 8 . 28 95 v 5 [ m at h . PR ] 2 9 Fe b 20 08 RANDOM MATRICES : THE CIRCULAR LAW
Let x be a complex random variable with mean zero and bounded variance σ 2. Let Nn be a random matrix of order n with entries being i.i.d. copies of x. Let λ 1 ,. .. , λn be the eigenvalues of 1 σ √ n Nn. Define the empirical spectral distribution µn of Nn by the formula µn(s, t) := 1 n #{k ≤ n|Re(λ k) ≤ s; Im(λ k) ≤ t}. The following well-known conjecture has been open since the 1950's: Circul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008